creating knowledge for future



High Quality


Scholarly Publishing
                CAREER NETWORK  
         
World's one of the largest Research
Career Network
Benefits
  •     Academic & Industry jobs
  •     Project funding
  •     Visiting faculty positions
  •     Visiting scientist positions
  •     Invited talks
  •     and more...  
   
Register FREE  
 
 
 
 
 
  Global Journal of Physical Chemistry. Volume 2, Issue 2 (2011) pp. 230-235
  Research Article Free Article
 
Structural and electrical characterizations of nanometer scaled aluminum oxide in metal / insulator / silicon (100) heterostructures
  Nabil Rochdia, Mahfoudh Raïssib, Sébastien Vizzinic, Cyril Coudreaua, Jean-Louis Lazzaria, Bernard Aufraya, Hamid Oughaddoud, François Arnaud D'Avitayaa  
     
a Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) CNRS UPR 3118, Aix-Marseille Université, Case 913, Campus de Luminy, 13288 Marseille cedex 9, France
b Laboratoire de l’Intégration du Matériau au Système (IMS) CNRS UMR 5218, ENSCBP 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
c CEA, DSM-IRAMIS-SPCSI, Bât. 462, Saclay, 91191, Gif-sur-Yvette cedex, France
d Institut des Sciences Moléculaires d'Orsay, ISMO-CNRS, Université Paris-Sud, 91405 Orsay, France; Département de Physique, Université de Cergy-Pontoise, 33, boulevard du Port - 95011 Cergy-Pontoise cedex, France

   
  Abstract  
  Nanometer-scaled aluminum oxide ultrathin layers were elaborated upon Si (100)-oriented surface by Atomic Layer Deposition and Oxidation technique. Cobalt / ultrathin aluminum oxides / silicon layered heterostructures were characterized using Atomic Force Microscopy and High-Resolution Transmission Electron Microscopy to probe morphological and interfacial properties before and after isothermal treatments. Current-Voltage measurements were performed at room temperature to study the electrical behavior of heterostructures built on n- and p- types doped silicon substrates.
     
  Keywords  
  Ultrathin films; Aluminum oxide; Atomic Layer Deposition; FMIS junctions; Ferromagnetic metal diffusion; I-V measurements  
     
   
   
   
   
     

  © 2020 Cognizure